博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
差分进化算法 DE-Differential Evolution
阅读量:5260 次
发布时间:2019-06-14

本文共 13740 字,大约阅读时间需要 45 分钟。

差分进化算法 (Differential Evolution)

 
Differential Evolution(DE)是由Storn等人于1995年提出的,和其它一样,DE是一种模拟生物进化的,通过反复,使得那些适应环境的个体被保存了下来。但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和,且不需要借助问题的特征信息,适于求解一些利用常规的数学规划方法所无法求解的复杂环境中的优化问题。目前,DE已经在许多领域得到了应用,譬如人工网络、化工、电力、机械设计、机器人、信号处理、生物信息、经济学、现代农业、食品安全、环境保护和运筹学等。
 
  • DE算法-作者网站: 
  • 维基百科资料库  : 
 
DE 算法主要用于求解的全局优化问题,其主要工作步骤与其他基本一致,主要包括变异(Mutation)、交叉(Crossover)、选择(Selection)三种操作。算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局逼近。
 
算法图解:
 算法伪代码: 
 
 
 
 
算法C代码:
 
1 //********************************************************/  2 //      DE/rand/1/bin --差分进化算法-(基本类型)         3 //********************************************************/  4   5   6 #include 
7 #include
8 #include
9 #include
10 11 /* Function definitions */ 12 13 double func(double *); 14 int usage(char *); 15 16 /* Random number generator defined by URAND should return 17 double-precision floating-point values uniformly distributed 18 over the interval [0.0, 1.0) */ 19 20 #define URAND ((double)rand()/((double)RAND_MAX + 1.0)) 21 22 /* Definition for random number generator initialization */ 23 24 #define INITRAND srand(time(0)) 25 26 /* Usage for the program */ 27 28 int usage(char *str) 29 { 30 fprintf(stderr, "Usage: %s [-h] [-u] [-s] [-N NP (20*D)] ", str); 31 fprintf(stderr, "[-G Gmax (1000)]\n"); 32 fprintf(stderr, "\t[-C crossover constant, CR (0.9)]\n"); 33 fprintf(stderr, "\t[-F mutation scaling factor, F (0.9)]\n"); 34 fprintf(stderr, "\t[-o
]\n\n"); 35 fprintf(stderr, "\t-s does not initialize random number generator\n"); 36 exit(-1); 37 } 38 39 40 int main(int argc, char **argv) 41 { 42 register int i, j, k, r1, r2, r3, jrand, numofFE = 0; 43 extern int D; 44 extern double Xl[], Xu[]; 45 46 int NP = 20 * D, Gmax = 1000, c, index = -1, s = 1; 47 48 double **popul, **next, **ptr, *iptr, *U, CR = 0.9, F = 0.9, 49 50 min_value = DBL_MAX, totaltime = 0.0; 51 52 char *ofile = NULL; 53 54 FILE *fid; 55 clock_t starttime, endtime; 56 57 58 /* Parse command line arguments given by user */ 59 60 for (i = 1; i < argc; i++) 61 { 62 if (argv[i][0] != '-') 63 usage(argv[0]); 64 65 c = argv[i][1]; 66 67 switch (c) 68 { 69 case 'N': 70 if (++i >= argc) 71 usage(argv[0]); 72 73 NP = atoi(argv[i]); 74 break; 75 case 'G': 76 if (++i >= argc) 77 usage(argv[0]); 78 79 Gmax = atoi(argv[i]); 80 break; 81 case 'C': 82 if (++i >= argc) 83 usage(argv[0]); 84 85 CR = atof(argv[i]); 86 break; 87 case 'F': 88 if (++i >= argc) 89 usage(argv[0]); 90 91 F = atof(argv[i]); 92 break; 93 case 'o': 94 if (++i >= argc) 95 usage(argv[0]); 96 97 ofile = argv[i]; 98 break; 99 case 's': /* Flag for using same seeds for */100 s = 0; /* different runs */101 break;102 case 'h':103 case 'u':104 default:105 usage(argv[0]);106 }107 }108 109 if (s) INITRAND;110 111 /* Printing out information about optimization process for the user */112 113 printf("Program parameters: ");114 printf("NP = %d, Gmax = %d, CR = %.2f, F = %.2f\n",115 NP, Gmax, CR, F);116 117 printf("Dimension of the problem: %d\n", D);118 119 120 /* Starting timer */121 122 starttime = clock();123 124 125 /* Allocating memory for current and next populations, intializing126 current population with uniformly distributed random values and127 calculating value for the objective function */128 129 130 // NP:种群大小, Gmax:迭代次数, CR:交叉概率, F:扰动向量的缩放因子131 132 //当前种群133 popul = (double **)malloc(NP*sizeof(double *));134 if (popul == NULL) perror("malloc");135 136 //下代种群137 next = (double **)malloc(NP*sizeof(double *));138 if (next == NULL) perror("malloc");139 140 //当前种群popul[NP][D+1] 141 for (i = 0; i < NP; i++)142 {143 //个体维度空间分配144 popul[i] = (double *)malloc((D + 1)*sizeof(double));145 if (popul[i] == NULL) perror("malloc");146 147 //初始化维度值148 for (j = 0; j < D; j++)149 popul[i][j] = Xl[j] + (Xu[j] - Xl[j])*URAND;150 151 //最后的元素内存放该个体的适应度值152 popul[i][D] = func(popul[i]);153 154 numofFE++;//统计评估次数155 156 //下一代个体空间分配157 next[i] = (double *)malloc((D + 1)*sizeof(double));158 if (next[i] == NULL) perror("malloc");159 }160 161 /* 为实验向量分配空间--Allocating memory for a trial vector U */162 163 U = (double *)malloc((D + 1)*sizeof(double));164 if (U == NULL) perror("malloc");165 166 167 /* The main loop of the algorithm */168 169 for (k = 0; k < Gmax; k++)170 {171 172 for (i = 0; i < NP; i++) /* Going through whole population */173 {174 175 /* Selecting random indeces r1, r2, and r3 to individuls of176 the population such that i != r1 != r2 != r3 */177 178 //1.选择三个互不相同的随机个体r1,r2,r3179 do180 {181 r1 = (int)(NP*URAND);182 } while (r1 == i);183 184 do185 {186 r2 = (int)(NP*URAND);187 } while (r2 == i || r2 == r1);188 do189 {190 r3 = (int)(NP*URAND);191 } while (r3 == i || r3 == r1 || r3 == r2);192 193 jrand = (int)(D*URAND);194 195 /* Mutation and crossover */196 //2. 执行变异和交叉操作197 for (j = 0; j < D; j++)198 {199 //执行二项式交叉200 if (URAND < CR || j == jrand)201 {202 //试验向量部分来自变异后的向量203 U[j] = popul[r3][j] + F*(popul[r1][j] - popul[r2][j]);204 }205 else206 //试验向量部分来自个体i207 U[j] = popul[i][j];208 }209 //3. 计算新生成向量的适应度值210 U[D] = func(U);211 212 numofFE++;213 214 /* Comparing the trial vector 'U' and the old individual215 'next[i]' and selecting better one to continue in the216 next population.注意:空间的交替变换和使用 */217 218 //贪婪策略从试验向量U和当前个体i中选择一个好的放入到下一代个体中219 if (U[D] <= popul[i][D])//新向量好220 {221 222 //试验向量U牛逼, next指向当前的试验向量U,u指向next, 方法:指针交换223 iptr = U;224 U = next[i];225 next[i] = iptr;226 }227 else//原始向量牛逼, next指向个体i, 方法: 直接拷贝228 {229 for (j = 0; j <= D; j++)230 next[i][j] = popul[i][j];231 }232 233 } /* End of the going through whole population */234 235 236 /* Pointers of old and new populations are swapped */237 //指针交换,各指针指向的空间发生变化238 ptr = popul;239 popul = next;240 next = ptr;241 242 } /* End of the main loop */243 244 245 /* Stopping timer */246 247 endtime = clock();248 totaltime = (double)(endtime - starttime);249 250 251 /* If user has defined output file, the whole final population is252 saved to the file */253 254 if (ofile != NULL)255 {256 if ((fid = (FILE *)fopen(ofile, "a")) == NULL)257 {258 fprintf(stderr, "Error in opening file %s\n\n", ofile);259 usage(argv[0]);260 }261 262 for (i = 0; i < NP; i++)263 {264 for (j = 0; j <= D; j++)265 fprintf(fid, "%.15e ", popul[i][j]);266 fprintf(fid, "\n");267 }268 fclose(fid);269 }270 271 /* Finding best individual */272 273 for (i = 0; i < NP; i++)274 {275 if (popul[i][D] < min_value)276 {277 min_value = popul[i][D];278 index = i;279 }280 }281 282 /* Printing out information about optimization process for the user */283 284 printf("Execution time: %.3f s\n", totaltime / (double)CLOCKS_PER_SEC);285 printf("Number of objective function evaluations: %d\n", numofFE);286 287 printf("Solution:\nValues of variables: ");288 for (i = 0; i < D; i++)289 printf("%.15f ", popul[index][i]);290 291 printf("\nObjective function value: ");292 printf("%.15f\n", popul[index][D]);293 294 295 /* Freeing dynamically allocated memory */296 297 for (i = 0; i < NP; i++)298 {299 free(popul[i]);300 free(next[i]);301 }302 free(popul);303 free(next);304 free(U);305 306 return(0);307 }

 经典文献: 

[1] Storn, R., "Designing Nonstandard Filters with Differential Evolution, IEEE Signal Processing Magazine, january 2005, pp. 103 - 106.

[2] Storn, R., "Sytem Design by Constraint Adaptation and Differential Evolution", IEEE Trans. on Evolutionary Computation, 1999, Vol. 3, No. 1, pp. 22 - 34.

[3] Storn, R. and Price, K., "Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces", Journal of Global Optimization, Kluwer Academic Publishers, 1997, Vol. 11, pp. 341 - 359.

[4] Gitsels, M. and Storn, R., Internet-Videotelephonie nach dem H.323-Standard, ITG-Fachbericht 144, 7. Dortmunder Fernsehseminar, pp. 87 - 92.

[5] Storn, R., , Technical Report TR-96-046, ICSI, November 1996, ftp.icsi.berkeley.edu.

[6] Storn, R., , Technical Report TR-96-039, ICSI, November 1996, ftp.icsi.berkeley.edu.

[7] Price, K. and Storn, R., "Differential Evolution: Numerical Optimization Made Easy", Dr. Dobb's Journal, April 97, pp. 18 - 24.

[8] Storn, R., NAFIPS 1996, Berkeley, pp. 519 - 523.

[9] Storn, R. and Price, K., IEEE Conference on Evolutionary Computation, Nagoya, 1996, pp. 842 - 844.

[10] Storn, R., (IEEE Signal Processing Letters, Vol. 3, No. 8, August 1996, pp. 242 - 244), Technical Report TR-95-061, ICSI, September 1995, ftp.icsi.berkeley.edu.

[11] Storn, R., IEEE International Conference on Evolutionary Computation ICEC 96, pp. 268 - 273, Technical Report TR-95-026, ICSI, May 1995, ftp.icsi.berkeley.edu.

[12] Storn, R., , Technical Report TR-95-018, ICSI, May 1995, ftp.icsi.berkeley.edu.

[13] Storn, R. and Price, K., , Technical Report TR-95-012, ICSI, March 1995, ftp.icsi.berkeley.edu. Anyone who is interested in trying Differential Evolution (DE) might access the .

[14] Storn, R., "A Debug/Trace Tool for C SW Projects", Dr. Dobb's Journal, February 1997, pp. 22 - 26.

[15] Storn, R., "Constrained Optimization", Dr. Dobb's Journal, May 1995, pp. 119 - 123.

[16] Christ, J., Storn, R. and Lueder, E., " New Shortlength DFTs for the Prime Factor Implementation on DSP Architectures", Frequenz, 1995, Band 49, Issue 1-2, pp. 8 - 10.

[17] Ballay, H. and Storn, R., "A Tool for Checking C Coding Conventions", C User's Journal, july 94, pp. 41 - 50..

[18] Storn, R., "A Hashing Function Based on Algebraic Coding", submitted for publication in the I.E.E. Proceedings~E, Computers and Digital Techniques.

[19] Storn, R., "A Radix-2 FFT-Pipeline Architecture With Reduced Noise to Signal Ratio", I.E.E. Proceedings~F, Radar and Signal Processing, 1994.

[20] Storn, R. , "Datensicherung mit Prüfsummen", ST-Computer, 1994.

[21] Storn, R., "Some Results in Fixed Point Error Analysis of the Bruun-FFT Algorithm, IEEE Trans. on Signal Processing, Vol. 41, No. 7, July 93, pp. 2371 - 2375.

[22] Storn, R. , "Statistische Optimierung", ST-Computer, Issues 12/1992 and 1/1993.

[23] Storn, R. , "On the Bruun Algorithm and its Inverse", Frequenz, Vol. 3-4, 1992, pp. 110 -116.

[24] Storn, R. , "Logische Schaltungen und deren Vereinfachung nach Quine-McCluskey", ST-Computer, Issues 3, 4 and 5, 1990.

[25] Storn, R. , "A novel Radix-2 Pipeline Architecture for the Computation of the DFT", IEEE Proc. of the ISCAS 1988, pp. 1899 -1902.

[26] Storn, R. , "On the Reduction of Arithmetic Complexity in the Chirp-Transform", Proc. ECCTD, 1987, pp. 239 -244.

[27] Storn, R. , "Ein Primfaktor-Algorithmus für die diskrete Hartley-Transformation", 9. DFG-Kolloquium über digitale Signalverarbeitung, 1986, pp. 79 -82.

[28] Storn, R. , "Fast Algorithms for the Discrete Hartley Transform", AEÜ, Band 40, Heft 4, 1986, pp. 233 -240.

[29] Storn, R. , "Dreieck-Quadratur-Oszillator. Nur ein zeitbestimmendes Glied erforderlich", Elektronik, Issue 5, 1982, p. 74.

[30] Storn, R. , "Constant Current Adapter", Elektor, Issue 7/8, 1981.

[31] Storn, R. , "De Luxe Transistor Tester", Elektor, Issue 7/8, 1979. (The corresponding circuit was among the winners of the european circuit design contest "EUROTRONIK").

BOOKS

[1] Price K., Storn R., Lampinen J., Differential Evolution - A Practical Approach to Global Optimization, Springer, Berlin, 2005.

[2] Contributor for Babu, B.V., Onwubolu, G. (Editors), New Optimization Techniques in Engineering, Springer, Berlin, 2004.

[3] Contributor for Corne, D., Dorigo., M, and Glover., F. (Editors), New Ideas in Optimization, McGraw-Hill, 1999.

 

转载于:https://www.cnblogs.com/tsingke/p/5809453.html

你可能感兴趣的文章
Python(软件目录结构规范)
查看>>
codeforces水题100道 第二十二题 Codeforces Beta Round #89 (Div. 2) A. String Task (strings)
查看>>
c++||template
查看>>
条件断点 符号断点
查看>>
连接Oracle需要jar包和javadoc文档的下载
查看>>
Dreamweaver cc新版本css单行显示
查看>>
【android】安卓的权限提示及版本相关
查看>>
Java基础教程——网络基础知识
查看>>
Kruskal基础最小生成树
查看>>
【hdu 1429】胜利大逃亡(续)
查看>>
javascript之Style物
查看>>
Factory Design Pattern
查看>>
P1192-台阶问题
查看>>
网站产品设计
查看>>
java中静态代码块的用法 static用法详解
查看>>
Java线程面试题
查看>>
day22 01 初识面向对象----简单的人狗大战小游戏
查看>>
Flask三剑客
查看>>
Hibernate-缓存
查看>>
【BZOJ4516】生成魔咒(后缀自动机)
查看>>